Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{1}$	a		Capacitance $=$ charge per (unit) potential difference	B1	Allow: capacitance $=$ charge / potential difference, charge/pd, charge/voltage but not charge / volt, coulomb /pd (no mixture of quantities and units. Allow 'over' instead of per
	b	(i)	$\mathrm{Q}=\mathrm{CV}=4.5 \mu \times 6.3=28 .(35)(\mu \mathrm{C})$	B1	Allow: $28(\geq 2$ sf)

Question			answer	Marks	Guidance
2	(a)	(i)	Any two from: Correct direction of movement of electrons Electrons deposited on $\mathbf{Y} /$ removed from \mathbf{X} An equal number of electrons removed and deposited on plates (AW)	$\mathrm{B} 1 \times 2$	
		(ii)1	$\begin{aligned} & Q=40 \times 10^{-6} \times 100\left(=4.0 \times 10^{-3} \mathrm{C}\right) \\ & 4.0 \times 10^{-3}=1.6 \times C \\ & C=2.5 \times 10^{-3}(\mathrm{~F}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 2 marks for $2.5 \times 10^{n}(\mathrm{~F})$, where $\mathrm{n} \neq-3$ (POT error)
		(ii)2	Graph starts at origin and has positive gradient A straight line graph that passes between 1-2 V at 100 s	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	(b)	(i)	$\begin{aligned} & C R=4.7 \times 10^{-6} \times 220\left(=1.03 \times 10^{-3} \mathrm{~s}\right) \\ & 4.00=6.00 e^{-\frac{t}{103 \times 10^{-3}}} \\ & t=-\ln (4.00 / 6.00) \times 1.03 \times 10^{-3} \\ & \text { time }=4.2 \times 10^{-4}(\mathrm{~s}) \end{aligned}$	C1 C1 A1	Note: Answer to 3 sf is 4.19×10^{-4} (s) Allow: 2 marks for $t=-\lg (4.00 / 6.00) \times 1.03 \times 10^{-3}=1.8 \times 10^{-4} \mathrm{~s}$
		(ii)	$\begin{aligned} & \text { speed }=\frac{0.100}{4.2 \times 10^{-4}} \\ & \text { speed }=240\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	B1	Possible ecf from (b)(i)
			Total	11	

Question			Answers		Marks	Guidance
3	(a)		$\begin{aligned} & \text { capacitance = charge/p.d. } \\ & \text { or capacitance }=\text { charge per (unit) p.d. } \end{aligned}$		B1	Allow: voltage instead of p.d. Note: Do not allow mixture of quantity and unit, e.g. 'charge per (unit) volt'
	(b)	(i)	$\begin{aligned} & C_{\text {parallel }}=240(\mu \mathrm{~F}) \\ & C_{T}=(240 \times 120) /(240+120) \text { or } C_{T}=\left(240^{-1}+120^{-1}\right)^{-1} \\ & \text { total capacitance }=80(\mu \mathrm{~F}) \end{aligned}$		$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A0 } \end{aligned}$	Allow :1 mark if C_{T} is not the subject, e.g: $\frac{1}{C_{T}}=\frac{1}{240}+\frac{1}{120}$
		(ii)	$\begin{aligned} & E=\frac{1}{2} V^{2} C \\ & E=\frac{1}{2} \times 6.0^{2} \times 80 \times 10^{-6} \\ & \text { energy }=1.4 \times 10^{-3}(\mathrm{~J}) \text { or } 1.44 \times 10^{-3}(\mathrm{~J}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf Allow: 1 mark for an answer $1.44 \times 10^{n}(n \neq-3)$
		(iii)	$6.0 / e=2.2(\mathrm{~V})$ (as on graph) Or $6.0 \times 0.37=2.2(\mathrm{~V})$ (as on graph) Or At $20(\mathrm{~s}), V=2.2(\mathrm{~V}), 2.2 / 6.0=0.37\left(\right.$ or $\left.e^{-1}\right)$		B1	Allow: Graph reading within $\pm 0.2 \mathrm{~V}$
		(iii)	$\begin{aligned} & C R=20 \\ & R=\frac{20}{80 \times 10^{-6}} \\ & R=2.5 \times 10^{5}(\Omega) \end{aligned}$		C1 A1	Allow: Follow through with $C R$ value from (iii)1
				Total	8	

Question			Expected Answer	Mark	Additional Guidance
4	(a)		coulomb per volt	B1	Allow: $1 \mathrm{~F}=1 \mathrm{CV}^{-1}$
	(b)	(i)	Electrons flow 'clockwise' / negative to positive These are deposited on (plate) A (and hence becomes negatively charged) or These are removed from (plate) B (and hence become positively charged)	B1 B1	Not: A becomes negative / B becomes positive
		(ii)	$\begin{aligned} & Q=C \times V=5.4 \times 10^{-9} \times 12 \\ & \text { charge }=6.48 \times 10^{-8}(C) \end{aligned}$	B1	
		(ii)	$\begin{aligned} & \text { energy }=\frac{1}{2} V^{2} C=\frac{1}{2} \times 12^{2} \times 5.4 \times 10^{-9} \\ & \text { energy }=3.89 \times 10^{-7}(\mathrm{~J}) \end{aligned}$	B1	Possible ecf if Q used from (ii)1
	(c)	(i)	$\begin{aligned} & R=\frac{12}{3.24 \times 10^{-6}} \\ & \text { resistance }=3.7 \times 10^{6}(\Omega) \end{aligned}$	M1 A0	Allow: ' $R=12 / 3.24 \mu$ ' ($=3.7 \mathrm{M} \Omega$)
		(ii)	time constant $=C R=5.4 \times 10^{-9} \times 3.7 \times 10^{6}$ or $0.02(\mathrm{~s})$ $\begin{aligned} & I=I_{0} e^{-t / C R}=3.24 \times e^{-(0080 / 0020)} \\ & \text { current }=0.059(\mu \mathrm{~A}) \end{aligned}$	C1 A1	Allow: ecf for time constant Allow: 1 mark for 5.9×10^{-n}
	(d)		(Total) resistance of circuit halved / time constant is halved Rate of discharge is doubled / (initial) current is doubled	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
			Total	10	

