Question		ion	Expected Answers	Marks	Additional Guidance	
1	а		Capacitance = charge per (unit) potential difference	B1	Allow: capacitance = charge / potential difference, charge/pd, charge/voltage but not charge / volt, coulomb /pd (no mixture of quantities and units. Allow 'over' instead of per	
	b	(i)	Q = CV = 4.5 µ x 6.3 = 28.(35) (µC)	B1	Allow: 28 (≥ 2 sf)	
		(ii)	$E = \frac{1}{2} CV^2 = 0.5 \times 4.5 \times \mu \times (6.3)^2$	C1	Allow use of E = $\frac{1}{2}$ QV and the Q value from (b)(i) Q=28 E= 8.82 and Q=28.4 E=8.946	
			= 8.9(3) x 10 ⁻⁵ (J) / 89.3 µ(J)	A1	Allow ecf from (b)(i) penalise power of ten error (-1)	
	С	(i)	Electrons / they move in an anticlockwise direction	B1	Alternatives for anticlockwise: from / lower plate around the circuit, from / lower plate through the resistor to top plate implied	
			Charge on plates decreases / electrons neutralise positive charge	B1	Capacitor discharges / loses charge	
			p.d. decreases exponentially	B1		
		(ii)	(dissipated as heat) in the resistor / wires	B1		
	d	(i)	Total capacitance = $1.5 + 4.5 = 6(.0)$ (µF)	A1	Allow one SF	
		(ii)	Original charge on 4.5 μ F capacitor is conserved (28.35 μ C)	C1	ecf from (b)(i) and (d)(i)	
			$v = (20.35 \mu) / (1.5 + 4.5) \mu = 4.7 (v)$ Total	A1 [11]		

Question		ion	answer	Marks	Guidance
2	(a)	(i)	Any <u>two</u> from: Correct direction of movement of electrons Electrons deposited on Y / removed from X An equal number of electrons removed and deposited on plates (AW)	B1 × 2	
		(ii)1	$Q = 40 \times 10^{-6} \times 100 (= 4.0 \times 10^{-3} \text{ C})$	C1	
			$4.0 \times 10^{-3} = 1.6 \times C$	C1	
			$C = 2.5 \times 10^{-3}$ (F)	A1	Allow : 2 marks for 2.5×10^{n} (F), where $n \neq -3$ (POT error)
		(ii)2	Graph starts at <u>origin</u> and has positive gradient	M1	
			A straight line graph that passes between 1-2 v at 100 s	AI	
	(b)	(i)	$CR = 4.7 \times 10^{-6} \times 220 \ (= 1.03 \times 10^{-3} \ \text{s})$	C1	
			$4.00 = 6.00e^{-\frac{t}{103 \times 10^{-3}}}$	C1	
			$t = -\ln(4.00/6.00) \times 1.03 \times 10^{-3}$		
			time = 4.2×10^{-4} (s)	A1	Note: Answer to 3 sf is 4.19×10^{-4} (s) Allow: 2 marks for $t = -lg(4.00/6.00) \times 1.03 \times 10^{-3} = 1.8 \times 10^{-4}$ s
		(ii)	speed = $\frac{0.100}{100}$		
			4.2×10^{-4} speed = 240 (m s ⁻¹)	B1	Possible ecf from (b)(i)
			Total	11	

(Question		Answers	Marks	Guidance
3	(a)		capacitance = charge/p.d. or capacitance = charge per (unit) p.d.	B1	Allow: voltage instead of p.d. Note: Do not allow mixture of quantity and unit, e.g. 'charge per (unit) volt'
	(b)	(i)	$C_{\text{parallel}} = 240 \ (\mu\text{F})$ $C_{\text{T}} = (240 \times 120)/(240 + 120) \text{ or } C_{\text{T}} = (240^{-1} + 120^{-1})^{-1}$ total capacitance = 80 (μF)	C1 C1 A0	Allow :1 mark if C_{T} is not the subject, e.g: $\frac{1}{C_{\text{T}}} = \frac{1}{240} + \frac{1}{120}$
		(ii)	$E = \frac{1}{2}V^{2}C$ $E = \frac{1}{2} \times 6.0^{2} \times 80 \times 10^{-6}$ energy = 1.4 × 10 ⁻³ (J) or 1.44 × 10 ⁻³ (J)	C1 A1	Possible ecf Allow: 1 mark for an answer 1.44×10^n (n \neq -3)
		(iii)	6.0/e = 2.2 (V) (as on graph) Or 6.0 × 0.37 = 2.2 (V) (as on graph) Or At 20 (s), $V = 2.2$ (V), 2.2/6.0 = 0.37 (or e^{-1})	B1	Allow: Graph reading within \pm 0.2 V
		(iii)	CR = 20 $R = \frac{20}{80 \times 10^{-6}}$ $R = 2.5 \times 10^{5} (\Omega)$	C1 A1	Allow: Follow through with CR value from (iii)1
			Total	8	

Question		ion	Expected Answer	Mark	Additional Guidance
4	(a)		coulomb <u>per</u> volt	B1	Allow : 1 F = 1 CV^{-1}
	(b)	(i)	Electrons flow 'clockwise' / negative to positive	B1	
			These are deposited on (plate) A (and hence becomes negatively charged) or These are removed from (plate) B (and hence become	B1	Not: A becomes negative / B becomes positive
			positively charged)		
		(ii)	$Q = C \times V = 5.4 \times 10^{-9} \times 12$ charge = 6.48 × 10 ⁻⁸ (C)	B1	
		(ii)	energy = $\frac{1}{2}V^2C = \frac{1}{2} \times 12^2 \times 5.4 \times 10^{-9}$		Descible of if O wood from (ii)
			energy = 3.89×10^{-7} (J)	B1	Possible ect if Q used from (II)1
	(c)	(i)	$R = \frac{12}{3.24 \times 10^{-6}}$	M1	Allow : ' <i>R</i> = 12/3.24μ' (= 3.7 MΩ)
			resistance = $3.7 \times 10^{\circ} (\Omega)$	A0	
		(ii)	time constant = CR = $5.4 \times 10^{-9} \times 3.7 \times 10^{6}$ or 0.02 (s)	C1	
			$I = I_0 e^{-t/CR} = 3.24 \times e^{-(0.080/0.020)}$		
			current = 0.059 (μA)	A1	Allow : ecf for time constant Allow : 1 mark for 5.9×10^{-n}
	(d)		(Total) resistance of circuit halved / time constant is halved	B1	
			Rate of discharge is <u>doubled</u> / (initial) current is <u>doubled</u>	B1	
			Total	10	